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In this study we consider the unsteady separated flow of an inviscid fluid (density
ρf ) around a falling flat plate (thickness T , half-chord L, width W , and density ρs)
of small thickness and high aspect ratio (T � L � W ). The motion of the plate,
which is initially released from rest, is unknown in advance and is determined as
part of the solution. The flow solution is assumed two-dimensional and to consist
of a bound vortex sheet coincident with the plate and two free vortex sheets that
emanate from each of the plate’s two sharp edges. Throughout its motion, the plate
continually sheds vorticity from each of its two sharp edges and the unsteady Kutta
condition, which states the fluid velocity must be bounded everywhere, is applied
at each edge. The coupled equations of motion for the plate and its trailing vortex
wake are derived (the unsteady aerodynamic loads on the plate are included) and are
shown to depend only on the modified Froude number Fr = Tρs/Lρf . Crucially, the
unsteady aerodynamic loads are shown to depend on not only the usual acceleration
reactions, which lead to the effect known as added mass, but also on novel unsteady
vortical loads, which arise due to relative motion between the plate and its wake.
Exact expressions for these loads are derived.

An asymptotic solution to the full system of governing equations is developed for
small times t > 0 and the initial motion of the plate is shown to depend only on the
gravitational field strength and the acceleration reaction of the fluid; effects due to
the unsteady shedding of vorticity remain of higher order at small times.

At larger times, a desingularized numerical treatment of the full problem is proposed
and implemented. Several example solutions are presented for a range of modified
Froude numbers Fr and small initial inclinations θ0 < π/32. All of the cases considered
were found to be unstable to oscillations of growing amplitude. The non-dimensional
frequency of the oscillations is shown to scale in direct proportion with the inverse
square root of the modified Froude number 1/

√
Fr . Importantly, the novel unsteady

vortical loads are shown to dominate the evolution of the plate’s trajectory in at
least one example. Throughout the study, the possibility of including a general time-
dependent external force (in place of gravity) is retained.

1. Introduction
Here the problem of determining the unsteady separated flow of an inviscid fluid

around a freely falling flat plate is considered and solved in two dimensions using a
boundary integral formulation. The problem represents perhaps the simplest example
of an inertial-fluid–free-boundary problem; that being a problem in which a massive
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free boundary is forced to interact with an incompressible fluid at high Reynolds
number.

Such interactions occur throughout the natural world, in particular wherever
biological systems come into contact with fluids. However, they are perhaps most
apparent in the field of animal locomotion. In such situations the role of the
inertial free boundary is played by the organism itself, be it a swimming fish or
a hovering insect, and the interaction between the organism and the surrounding
fluid is typically harnessed to provide an efficient means of propulsion. Generically,
the organism in question will actively create a disturbance in the fluid immediately
surrounding itself and will experience a corresponding reaction. At the moderately
high Reynolds numbers relevant here, these disturbances are most commonly
manifested as concentrated vortices that are subsequently shed into a vortical wake.
Our ultimate goal is to understand the underlying mechanisms at work in such
situations, with particular emphasis on gaining insight into the interaction between
the organism and its wake. Identical interactions occur, albeit passively, within the
context of the falling card problem; as the card falls it creates a vortical wake, which
in turn influences the card’s downward trajectory. Because of this, we adopt the
simpler falling card problem as our paradigm.

To date there have been many investigations into variants of the falling card
problem. In an early paper, Maxwell (1853) made several detailed and insightful
observations on the subject of falling rectangular slips of paper. He began, “Every one
must have observed that when a slip of paper falls through the air, its motion, though
undecided and wavering at first, sometimes becomes regular.” Much later Willmarth,
Hawk & Harvey (1964) performed a beautiful set of experiments with freely falling
disks and confirmed Maxwell’s observations. At high Reynolds number, they found
that, as they fell, the disks exhibited either “regular pitching and translational
oscillations”, or alternatively, “tumbled in an apparently random manner”, with
tumbling occurring for disks with a non-dimensional moment of inertia above a
critical value. In a more recent study Field et al. (1997) identified an additional class of
chaotic motions for moments of inertia near to the critical value. For rectangular cards,
Belmonte, Eisenberg & Moses (1998) took special care to study the two-dimensional
aspects of the problem at high Reynolds number and identified a transition from
fluttering to tumbling at a critical modified Froude number (the modified Froude
number plays essentially the same role as the non-dimensional moment of inertia).
Soon after, Mahadevan, Ryu & Samuel (1999) considered freely tumbling plastic
strips of high aspect ratio and used dimensional arguments to provide a scaling for
the average rate of descent and the tumbling frequency. Recently, investigations based
on the numerical solution of the two-dimensional Navier–Stokes equations have also
been carried out by Mittal, Seshadri & Udaykumar (2004), who considered a freely
falling cylinder with rounded edges, and Pesavento & Wang (2004) and Andersen,
Pesavento & Wang (2005), who considered a freely falling elliptical cylinder. A
transition from flutter to tumble is again reported as the non-dimensional moment of
inertia of the cylinder is increased.

From a more theoretical perspective many authors, including some of those
highlighted above and referenced therein, have explored a plethora of low-dimensional
dynamical systems that seek to model the complexities of the falling card problem
by introducing ad hoc approximations for the aerodynamic force and torque on the
falling card. In the current study we succeed in completely removing the need for
such inventions by properly posing the falling card problem within the context of
two-dimensional inviscid theory. A detailed description of the card’s vortical wake
is incorporated and the loads that arise through the action of the resulting normal
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Figure 1. A cross-section and three-dimensional diagram of the falling plate and its vortex
wake indicating the plate thickness T , half-chord L, width W , plate density ρs , fluid density
ρf and the gravitational field strength g.

pressure forces on the card are included. As a result, we are able to investigate the
interaction between the falling card and its vortical wake. Forces associated with
viscous shear stresses, which are of order 1/

√
Re � 1, are neglected.

1.1. Non-dimensionalization of the governing equations

The problem is essentially described as follows. A rigid flat plate of chord length 2L,
thickness T , width W , and density ρs is placed in a uniform gravitational field of
strength g and immersed in a fluid of density ρf and kinematic viscosity ν. See figure 1.
When released from rest the plate will either rise due to buoyancy, fall under gravity,
or remain perfectly still. In what follows, we will consider only the falling case, in
which ρs > ρf . As it falls, the motion of the plate will, in general, become complicated,
consisting of various three-dimensional fluttering and tumbling motions. However, if
we restrict our attention to thin cards of high aspect ratio, such that T � L � W ,
then we can reasonably expect the motion to remain approximately two-dimensional.
The two-dimensional problem retains many of the interesting features of the fully
three-dimensional problem, including its interactive nature, but more to the point it
is not understood in its own right and is therefore worthy of study.

We begin by non-dimensionalizing the relevant governing equations – the Euler
equations and Newton’s equations of motion for the plate – using the half-chord
length L, the fluid density ρf , an as yet undetermined velocity U , and twice the fluid
stagnation pressure ρf U 2. The unknown velocity U is determined by assuming that
the gravitational (or otherwise externally prescribed) force on the plate is in rough
balance with the aerodynamic force on the plate. In other words, U is taken to be the
approximate terminal velocity of the falling plate. This balance also forms the basis
of an experimental scaling law studied by Mahadevan et al. (1999). The magnitude
of the gravitational force on the plate is 2LT W (ρs − ρf )g (the buoyancy force has
been included in this estimate) and the magnitude of the aerodynamic force on the
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plate is of the order 2LWρf U 2. A balance therefore provides an estimate for U 2 in
the form T g(ρs − ρf )/ρf . (If gravity were absent and a force of magnitude f present
instead, then a dominant balance would lead to the estimate f/2LWρf for U 2.)

Having identified the unknown velocity U , only two non-dimensional parameters
remain: the Reynolds number Re = UL/ν and the modified Froude number

Fr =
ρs

(ρs − ρf )

U 2

gL
=

m

2L2Wρf

=
Tρs

Lρf

, (1.1)

where m is the mass of the plate. Since we are considering an effectively inviscid fluid,
the Reynolds number is henceforth assumed large, Re � 1, and consequently does
not appear again in our formulation. However, the effects of viscosity are included
by allowing discontinuous solutions of the governing Euler equations, in particular
solutions containing vortex sheets. Such solutions are considered physically acceptable
since the presence of viscosity, however small, is able to smooth the corresponding
discontinuities in the real fluid. As a result, and in contrast to the previous theoretical
work on the problem, we are able to include the dynamics of the plate’s wake in our
description of the flow.

In contrast, the modified Froude number remains relevant and has a number of
physical interpretations, as alluded to in the equation above. However, within the
context of the falling card problem, it seems most natural to interpret it as the ratio
of the mass of the plate over the mass of the fluid column immediately surrounding
the plate. As such it essentially characterizes the relative importance of plate inertia –
the motion of a relatively heavy plate (Fr � 1) being mostly unaffected by the motion
of the fluid; the motion of a relatively light plate (Fr � 1) being highly dependent
on the motion of the surrounding fluid.

2. Problem formulation
We pose the problem in the rest frame of the fluid in the far field and the complex

number z = x + iy is used to denote the position of a point in this frame, where
x and y are the horizontal and vertical Cartesian components of the point z. The
plate is assumed to fall through this frame under the influence of the gravitational
and aerodynamic forces in the problem (other external forces may be included) and
our task is to determine its exact trajectory, as well as the resulting motion in the
surrounding fluid.

2.1. The motion of the plate

We use two variables to describe the plate’s position and orientation: the position of
the plate’s centre of mass is denoted using the complex number c(t) and the angle
that the plate’s tangent makes with the horizontal is denoted θ(t). For convenience,
we also choose to describe the plate parametrically using the complex number ζ (s, t),
where

ζ (s, t) = c(t) + seiθ(t), (2.1)

and s is the signed arc-length as measured along the plate from c(t). In addition, the
position of each of the plate’s two sharp edges is denoted using the complex numbers
e±(t), where

e±(t) = c(t) ± eiθ(t). (2.2)



Falling cards 397

(a)

c (t)

e– (t)

e+ (t)

ζ (s, t)

ζ– (Γ, t)

ζ+ (Γ, t)

(b)

–1 s 1

z– (Γ, t)

z+ (Γ, t)

θ

Figure 2. The dependent variables in (a) the rest frame of the fluid in the far field and (b) the
body frame. The centre of the plate c(t), the orientation angle θ (t), the plate edges e±(t), the
position of a point on the plate ζ (s, t), and the position of a point on the shed vortex sheets
ζ± (Γ, t) (or z± (Γ, t) in the body frame).

See figure 2. Having defined our dependent variables c(t) and θ(t), we next consider
their time evolution. We do this by writing down the equations of motion for c(t) and
θ(t) that result from a consideration of the gravitational and aerodynamic forces on
the falling card. In non-dimensional form, the appropriate equations of motion are

Fr c̈(t) = F (t) + 1
2
�(t)ieiθ(t), (2.3)

1
3
Fr θ̈ (t) = T (t) + 1

2
�(t), (2.4)

where �(t) is the normal aerodynamic force on the plate and �(t) is the aerodynamic
torque on the plate. In the interests of generality, the gravitational force has been
included in the form of the externally prescribed force F (t) and an externally
prescribed torque T (t) has also been included. The falling card problem can be
recovered by setting F (t) = −i and T (t) = 0. In addition, the relevant moment
of inertia of the card has been taken to be 2L3T Wρs/3, which corresponds to a
uniform distribution of mass throughout the plate. A dot has been used to denote
differentiation with respect to time. Equations (2.3) and (2.4) confirm that the modified
Froude number is an effective inertial constant that characterizes the strength of the
interaction between the falling plate and the fluid.

Since the aerodynamic loads �(t) and �(t) both depend, in a complicated way, on
the plate’s position, velocity, acceleration, and general fluid environment it is easy to
see that the description of the problem is far from complete. Fortunately, the analysis
required to uncover the exact dependence of �(t) and �(t) on the other variables in
the problem has already been carried out and the reader is referred to the preparatory
study by Jones (2003) for a detailed account. The essential definitions and results from
Jones (2003) are given here for convenience. Since Re � 1, the force �(t) and the
torque �(t) are assumed to take the form

�(t) = −
∫ +1

−1

[p±(λ, t)]+− dλ, (2.5)

�(t) = −
∫ +1

−1

λ[p±(λ, t)]+− dλ, (2.6)
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where [p±(s, t)]+− = p+(s, t) − p−(s, t) denotes the pressure difference across the plate
at the point ζ (s, t). In turn, the pressure difference [p±(s, t)]+− can be expressed,
through the use of the Euler equations, in the form

[p±(s, t)]+− = −∂tΓ (s, t) − γ (s, t)(µ(s, t) − τ (t)), (2.7)

where γ (s, t) is the jump in the tangential component of the fluid velocity across the
plate, µ(s, t) is the average of the tangential fluid velocities on either side of the plate,
and τ (t) is the tangential component of the plate’s velocity. In addition, Γ (s, t) is
defined as the circulation around a particular closed curve that intersects the falling
plate exactly once at ζ (s, t) (for a more detailed definition of the circulation and the
contour used to define it see Jones 2003). However, for our purposes, it is sufficient
to note that dΓ = γ (s, t) ds on the plate and so Γ (s, t) takes the form

Γ (s, t) = Γ−(t) +

∫ s

−1

γ (λ, t) dλ, (2.8)

where Γ−(t) can be considered a time-dependent constant of integration.

2.2. The motion of the fluid

To find expressions for γ (s, t) and µ(s, t) it is necessary to introduce a more detailed
description of the motion in the fluid surrounding the plate and so we introduce the
complex-conjugate velocity field for the flow, denoted Φ(z, t) = u(z, t) − iv(z, t) where
u(z, t) and v(z, t) are the horizontal and vertical components of the fluid velocity at
a general field point z. Since we are primarily concerned with information pertaining
to the fluid motion on the upper and lower surfaces of the plate, we choose to write
Φ(z, t) as a boundary integral of the form

Φ(z, t) =
1

2πi

∫ +1

−1

γ (λ, t) dλ

(ζ (λ, t) − z)
− 1

2πi

[∫ Γ±(t)

0

dΛ

(ζ±(Λ, t) − z)

]+

−
, (2.9)

where the square brackets again denote a difference such as [α±]+− = α+ −α−. Inherent
in the above Ansatz for Φ(z, t) are the following two assumptions. First, we have
assumed that the falling plate can be successfully modelled as a bound vortex sheet
whose position coincides with that of the plate. And second, we have assumed that
the plate’s wake can be successfully modelled as two trailing vortex sheets, each of
which is shed from one of the plate’s two sharp edges. The first term in equation (2.9)
is the complex-conjugate velocity field induced by the bound vortex sheet and the
remaining term represents the complex-conjugate velocity field induced by the two
trailing vortex sheets. As a result, equation (2.9) is only able to represent flow fields
in which the boundary layers on the plate separate tangentially at the edges e±(t). In
other words, no secondary separation is permitted. However, the theoretical benefits
associated with the use of equation (2.9) are compelling, as we will see.

The experienced reader will note that the two free vortex sheets have been
parameterized using the circulation Γ – the complex number ζ±(Γ, t) being used
to denote the position of a point on one of the two trailing vortex sheets at which
the circulation is Γ . See figure 2. This choice is convenient since it leads to the
explicit appearance of Γ+(t) and Γ−(t) in equation (2.9), where Γ+(t) is the total
circulation around the sheet that is shed from e+(t) and Γ−(t) is the negative of the
total circulation around the sheet that is shed from e−(t). To simplify the forthcoming
analysis, we will use the complex number z±(Γ, t) to denote the position of the point
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ζ±(Γ, t) as measured in the body frame of the plate. As a result, we write

z±(Γ, t) = (ζ±(Γ, t) − c(t))e−iθ(t). (2.10)

Writing Φ(z, t) in the form (2.9) is also useful for a number of other reasons, not least
of which is that Φ(z, t) then automatically satisfies the governing Euler equations as
well as the proper far-field boundary conditions. Use of equation (2.9) also guarantees
that the jump in the tangential component of the fluid velocity across the plate is
γ (s, t), as advertised in equation (2.7), and similarly guarantees that the circulation
at e−(t) is Γ−(t), as advertised in equation (2.8). Furthermore, since Φ(z, t) must also
satisfy Kelvin’s circulation theorem, the kinematic boundary condition on the plate,
and the unsteady Kutta condition, it can be shown that γ (s, t) must take the form

γ (s, t) = 〈γ±(t)a±(s)〉+
− −

√
1 − s2(2 θ̇ (t) + 〈b±(s, t)〉+

−), (2.11)

where

γ±(t) =
1

∂Γ z±(Γ±(t), t)
, (2.12)

a±(s) = 1 − 1

π
arccos(±s), (2.13)

b±(s, t) =
γ±(t)a±(s)√

1 − s2
± 1

π

∫ Γ±(t)

0

Re{α(z±(Λ, t), s)}dΛ, (2.14)

and

α(z, s) =
1√

z + 1
√

z − 1(z − s)
. (2.15)

The reader is referred to Jones (2003) for a detailed derivation of this result. The
angled brackets in equation (2.11) are used to denote a sum such as 〈α±〉+

− = α+ + α−
and it is important to note that both a±(s) and b±(s, t) are bounded functions of
s, which approach well-defined limits as s approaches ±1. In fact, a± (±1) = 1 and
a± (∓1) = 0 so that γ (s, t) takes the values γ±(t) at s = ±1. As a result, it is clear
from equations (2.9) and (2.11) that the complex-conjugate velocity field Φ(z, t) is
bounded everywhere, in particular at each of plate’s two sharp edges z = e±(t), and
thus does indeed satisfy the unsteady Kutta condition. For completeness, we note that
Kelvin’s circulation theorem and the unsteady Kutta condition additionally require
that Γ+(t) and Γ−(t) satisfy the two simultaneous integral constraints

− 1

π

[∫ Γ±(t)

0

Re

{
1√

z±(Λ, t) + 1
√

z±(Λ, t) − 1

}
dΛ

]+

−

= 2 ν(t), (2.16)

− 1

π

[∫ Γ±(t)

0

Re

{
z±(Λ, t)√

z±(Λ, t) + 1
√

z±(Λ, t) − 1

}
dΛ

]+

−

= θ̇ (t), (2.17)

where ν(t) = Im{ċ(t)e−iθ(t)} is the normal component of the velocity of the plate’s
centre of mass. However, we will consider the imposition of these constraints later
on. Having imposed all the necessary boundary conditions, we can then use equation
(2.9) to show that

µ(s, t) = − 1

2π

[∫ Γ±(t)

0

Im

{
1

(z±(Λ, t) − s)

}
dΛ

]+

−
, (2.18)
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and then we have only to note that τ (t) = Re{ċ(t)e−iθ(t)} to complete our definitions
of Γ (s, t), γ (s, t), µ(s, t), and τ (t). In principle, we can now reconstruct the pressure
difference [p±(s, t)]+−, the normal aerodynamic force �(t), and the aerodynamic torque
�(t) using equations (2.7), (2.5), and (2.6).

At this point, it is useful to take a moment to consider how we have enlarged
our description of the problem by choosing to describe the flow surrounding the
plate using equations (2.9)–(2.18). In fact, we have introduced four new descriptive
variables: ζ+(Γ, t), ζ−(Γ, t), Γ+(t), and Γ−(t). Together, these four variables completely
describe the distribution of vorticity in the fluid surrounding the plate and in so
doing completely characterize the dynamics of the plate’s wake. See figure 2. Having
identified our four new descriptive variables, we next consider their time evolution.

Fortunately, the problem of describing the time evolution of a free vortex sheet has
already been considered by Birkhoff (1962) and Rott (1956), who solved the problem
using a particularly elegant Lagrangian formulation. In this formulation the vortex
sheet is parameterized using the circulation, as in the current formulation, and points
on the sheet that conserve their circulation are shown to move with a velocity equal to
the average of the fluid velocities on each side of the sheet. As a result, the boundary
condition which states that the pressure should be continuous across the sheet is
automatically satisfied. Application of these ideas to the problem under investigation
leads to the differential equations

∂tζ ±(Γ, t) = Φ(ζ±(Γ, t), t), (2.19)

which govern the time evolution of the functions ζ±(Γ, t) and, by definition, the
dynamics of the wake. In addition, equations (2.19) must be supplemented by the
ordinary differential equations

Γ̇ ±(t) = −γ±(t)(µ±(t) − τ (t)), (2.20)

where µ±(t) = µ(±1, t), which govern the time evolution of Γ±(t). Equations (2.20)
result from the imposition of the integral constraints (2.16) and (2.17) in a time
differentiated form. The formal details of the time differentiation are given in Jones
(2003), but physically, equations (2.20) describe the rate at which circulation is shed
from each of the plate’s two sharp edges into the vortex wake. Equations (2.20)
were also used by Krasny (1991) and Nitsche & Krasny (1994) in their work on the
shedding of vorticity from the edges of flat plates and circular tubes.

Equations (2.1)–(2.20) then constitute a closed system of ordinary differential
equations in the unknowns c(t), θ(t), ċ(t), θ̇(t), ζ±(Γ, t), and Γ±(t), which can be
integrated forward in time to find the trajectory of the falling plate and the resulting
motion in the surrounding fluid. However, before seeking a solution to equations
(2.1)–(2.20), numerical or otherwise, it is essential that we understand their structure
in more detail. In particular, we must first determine whether the governing evolution
equations – equations (2.3), (2.4), (2.19), and (2.20) – are explicit in the unknowns
c(t), θ(t), ċ(t), θ̇(t), ζ±(Γ, t), and Γ±(t).

2.3. The interaction between the plate and the fluid

It is relatively straightforward to see that the differential equations (2.19) and (2.20)
are explicit in the unknowns c(t), θ(t), ċ(t), θ̇ (t), ζ± (Γ, t), and Γ±(t), since the functions
γ (s, t) and µ(s, t) are themselves explicit in those unknowns according to equations
(2.11)–(2.18). However, it is not so easy to see whether equations (2.3) and (2.4) are
similarly explicit or not. This is solely due to the appearance of the time derivative
∂tΓ (s, t) on the right-hand side of equation (2.7) and so we must next examine this
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term in more detail. We begin by differentiating equation (2.8) with respect to time
while holding s fixed to obtain

∂tΓ (s, t) = Γ̇ −(t) +

∫ s

−1

∂tγ (λ, t) dλ, (2.21)

where Γ̇ −(t) is as defined in equation (2.20) and

∂tγ (s, t) = 〈γ̇±(t)a±(s)〉+
− −

√
1 − s2(2 θ̈ (t) + 〈∂tb±(s, t)〉+

−). (2.22)

We continue by investigating the time derivatives γ̇±(t) and ∂tb±(s, t). By
differentiating equation (2.14) we obtain the latter term in the form

∂tb±(s, t) =
γ̇±(t)a±(s)√

1 − s2
± 1

π
∂t

∫ Γ±(t)

0

Re {α(z±(Λ, t), s)} dΛ. (2.23)

Before differentiating the integral in equation (2.23) with respect to time, it is important
to note that the integrand α(z, t) has an inverse square-root singularity at the upper
limit of integration since z±(Γ±(t), t) = ±1. As a result, it is helpful to rewrite the
integral in the form

lim
ε→0

∂t

∫ Γ±(t)−ε

0

Re {α(z±(Λ, t), s)} dΛ,

thereby temporarily avoiding the problems associated with the singularity. The time
derivative can then be performed without incident using the formula for the derivative
of an integral with a variable limit of integration, and subsequent use of integration
by parts in the resulting expression, followed by the evaluation of the limit ε → 0
using equations (2.12), (2.15), and (2.18)–(2.20), then leads to the result

∂t

∫ Γ±(t)

0

Re {α(z±(Λ, t), s)} dΛ = η±(s, t) +

∫ Γ±(t)

0

Re {α(z±(Λ, t), s)∂Γ β±(Λ, t)} dΛ,

where η±(s, t) = Re{α(z±(0, t), s)β±(0, t)} and β±(Γ, t) = −∂tz±(Γ, t)/∂Γ z±(Γ, t).
Furthermore, since equation (2.23) must remain bounded at s = ±1, the above
result can be used to show that γ̇±(t) take the form

γ̇±(t) = −γ±(t)Re{∂Γ β±(Γ±(t), t)}. (2.24)

Since both α(z±(Γ, t), s) and β±(Γ, t) are explicit in the unknowns c(t), θ(t), ċ(t),
θ̇ (t), ζ±(Γ, t), and Γ±(t) it is now clear that equation (2.23) is similarly explicit.
Unfortunately, the appearance of θ̈(t) in equation (2.22) implies that �(t) and �(t)
depend on θ̈ (t) through equations (2.5)–(2.7) and (2.21)–(2.23). As a result, the
equations of motion (2.3) and (2.4) are implicit in c̈(t) and θ̈(t). The implicit nature
of the governing equations should not surprise us because it reflects the interactive
nature of the problem in hand. However, it is rather unusual and therefore worthy of
note.

Finally, we note that the equations of motion (2.3) and (2.4) are also linear in c̈(t)
and θ̈ (t) and as such can be solved straightforwardly to obtain an explicit set of
governing equations as required.

3. Asymptotic small-time solution
In general, the falling plate is released from rest and so the question of how the free

vortex sheets come into existence is an important one. We can answer this question by
constructing a small-time asymptotic solution to the system of equations (2.1)–(2.20).
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Just after the plate is released we expect the solution to consist of two small
starting vortices, one at each of the plate’s two sharp edges, which take the form of
two infinite spiral vortex sheets. See the theoretical and experimental work of Moore
(1974, 1975), Pullin (1978), Pullin & Perry (1980), and Pullin & Wang (2004). For small
enough times t > 0, these spiral vortex sheets are expected to have approximately
self-similar structure in time due to the absence of a typical length scale in the
regions surrounding the edges. With this in mind it is possible to show, using scaling
arguments, that equations (2.1)–(2.20) admit asymptotically self-similar solutions of
the form

c(t) ∼ c0 + α0e
iϑ0 tm+1 + · · · , (3.1)

θ(t) ∼ θ0 + β0t
m+1 + · · · , (3.2)

ζ±(Γ, t) ∼ c±(t) ± |δ±|2/3t2(m+1)/3ω±(τ±(Γ, t))eiθ(t) + · · · , (3.3)

Γ±(t) ∼ J±|δ±|4/3t (4m+1)/3 + · · · , (3.4)

where the similarity variables τ±(Γ, t) are defined to be

τ±(Γ, t) = 1 − Γ J −1
± |δ±|−4/3t−(4m+1)/3. (3.5)

As in Jones (2003), the functions ω±(τ±) then satisfy the integro-differential equations

p ω±(τ±) + q(1 − τ±) ω′
±(τ±) = ∓ J±

2πi

[∫ 1

0

dτ

ω±(τ ) − ω±(τ±)
+

∫ 0

−∞

√
−ξ F±(ξ )

(ξ − ω±(τ±))
dξ

]
,

(3.6)

where p = 2(m + 1)/3, q = (4m + 1)/3, and

F±(ξ ) =
1

π

∫ 1

0

Re

{
1√

ω±(τ )(ω±(τ ) − ξ )

}
dτ, (3.7)

The boundary conditions ω±(0) = 0 and Im{ω′
±(0)} = 0, which ensure that the spiral

vortex sheets join up with the edges of the plate and separate tangentially, must also
be satisfied. The unknown constants δ± and J± can be shown to take the values

δ± = α0 sin(ϑ0 − θ0) ± β0

2
, (3.8)

J± = −
√

2 π(m + 1) sgnδ±

[∫ 1

0

Re

{
1√

ω±(τ )

}
dτ

]−1

. (3.9)

However, in contrast with the cases considered by Jones (2003), the constants m, α0,
ϑ0, and β0 are also unknown and must be determined as part of the solution. In fact,
if we assume that the prescribed force and torque, F (t) and T (t), have the small-time
asymptotic expansions

F (t) ∼ F0t
n−1 + · · · , (3.10)

T (t) ∼ T0t
n−1 + · · · , (3.11)

then substitution of the asymptotic expansions (3.1)–(3.4) into equations (2.3) and
(2.4) – the governing equations of motion for the falling plate – followed by the series
expansion of the resulting expressions in powers of t using equations (A 1)–(A 10) in



Falling cards 403

... 3π
16

3π
16θ0 = 0 ...

Fr = 1

7π
16

– – π
16

π
16

–
4

–π
4
π

8
–π

8
π 7π

16

Figure 3. The initial force vector on a falling plate after release from rest at modified Froude
number Fr = 1. The vectors shown represent the initial force on the plate’s centre of mass
(normalized so that the magnitude of the longest vector is 3) for the initial angles θ0 = −7π/16,
−3π/8, −5π/16, . . . , 5π/16, 3π/8, and 7π/16.

the Appendix, shows that

m = n, (3.12)

and that the constants α0, ϑ0, and β0 can be expressed in the form

α0e
iϑ0 =

1

n (n + 1) Fr

[
F0 − π

(π + 2Fr)
Im

{
F0e

−iθ0
}

ieiθ0

]
, (3.13)

β0 =
3

n (n + 1) Fr

[
T0 − 3π

(3π + 16Fr)
T0

]
, (3.14)

where terms of higher order than O(tm−1) have been neglected.
Within the context of the falling card problem (n = 1, F0 = −i, and T0 = 0),

the above result shows that the centre of mass of the plate does not fall vertically
downward immediately after its release, as one might expect, but instead slides
sideways and down along a straight line, the slope of which depends on the initial
angle θ0 and the modified Froude number Fr . This observation is significant since it
shows that the aerodynamic response to the downward pull of gravity is immediate
and does not take time to build up. However, the response is produced by nothing
more than the acceleration reaction of the fluid (see Batchelor 1967, p. 405); the
unsteady forces that arise from the continual shedding of vorticity enter only at
O(t2(2m−1)/3). In any case, the effective sideways and downward forces on the plate at
release take the form

Fr Re{c̈(0)} = − π

2(π + 2Fr)
sin 2θ0, (3.15)

Fr Im{c̈(0)} =
π

(π + 2Fr)
cos2 θ0 − 1. (3.16)

A graphical illustration of the force vectors at Fr = 1 and for a range of initial angles
θ0 is presented in figure 3.

To complete our description of the asymptotic small-time solution it is necessary to
find ω±(τ±) by solving the integro-differential equations (3.6) subject to the boundary
conditions ω±(0) = 0 and Im{ω′

±(0)} = 0. This was done numerically, for m = 1,
using a method not unlike that employed by Pullin (1978) and the real and imaginary
parts of the resulting solution, as well as the parametric spiral solution, are plotted
in figure 4.
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Figure 4. The solution for ω±(τ±); (a) the real and imaginary parts of ω±(τ±) plotted against
the similarity variable τ±; (b) a parametric plot of the self-similar spiral vortex sheet. In the
case pictured above J± ≈ −6.4352.

4. Numerical solution
Having explored the small-time solution of equations (2.1)–(2.20) asymptotically we

next seek the solution at larger times and therefore resort to a numerical approach.
The numerical method employed here is similar to that used in Jones (2003) and
the reader is referred to that study for a detailed description of the algorithm used.
However, some modification of the numerical method was necessary in order to
incorporate the interactive nature of the present problem, and so the method is
re-presented here in brief.

To begin with, we note that the evolution equations for ζ±(Γ, t) are ill-posed and
lead generically to weak curvature singularities as discovered by Moore (1979) and
later investigated by Krasny (1986b), Shelley (1992), and others. As a result, finding a
solution at long times requires regularization; see the work of Krasny (1986a, b), and
Baker & Shelley (1990). Accordingly, we follow Krasny (1986a) and modify equation
(2.19) by replacing the Cauchy kernel therein with the vortex-blob kernel

Kδ(z) =
z

|z|2 + δ2
, (4.1)

where δ is a small positive constant. Since Kδ(z) approaches the Cauchy kernel as
δ → 0 it is hoped that the solution of the resulting system of ordinary differential
equations will converge to the physically relevant solution as δ → 0. Indeed, Liu &
Xin (1995) have already proven that a class of vortex-blob methods converge to weak
solutions of the two-dimensional Euler equations as δ → 0 under certain assumptions.
A consistent treatment of the problem then demands that similar modifications be
made to equations (2.9)–(2.20). However, we will not concern ourselves with the
details of the modifications here. For our purposes, it is sufficient to note that the
expressions for the aerodynamic forces and torques, reproduced in the Appendix,
remain formally unchanged under this substitution, the only difference being that the
kernels δn(z) become slightly modified.

4.1. Time-marching algorithm

Having accepted these modifications, we continue by partitioning the time interval
over which the solution is required into a number of small sub-intervals that are
separated by the discrete times ti , where i = 1, . . . , I and t0 = 0. At time ti , the
position of the plate’s centre of mass is denoted using the complex number ci and the
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Figure 5. The discretized vortex wake in the body frame. The trailing vortex sheets are
discretized using J Lagrangian vortex blobs (•), any tightly wound spiral portions being
replaced with a point vortex at the spiral centre (◦). In total, there are K point vortices and L
vortex blob sheets.

angle between the plate and the horizontal is similarly denoted using the real number
θi . The two trailing vortex sheets are then discretized using a total of J Lagrangian
points whose positions, relative to the plate, are denoted using the complex numbers
zi

j for j = 1, . . . , J . Likewise, the circulation at each Lagrangian point is denoted

using the real numbers Γ i
j for j = 1, . . . , J . The integer j is referred to as the

Lagrangian index of the point zi
j . Since zi

j denotes only the relative position of each

Lagrangian point, the actual position can be reconstructed from ci , θi , and zi
j in the

form ζ i
j = ci + zi

je
iθi if required.

Having discretized the solution, we next take our approximation a step further by
replacing the inner turns of any tightly wound spiral portions of the free vortex sheets
with K isolated point vortices; one point vortex at each spiral centre. See figure 5.
To keep track of these point vortices, we denote their Lagrangian indices using the
integers σk for k = 1, . . . , K . For convenience, we also denote the Lagrangian indices
of the beginning and end of the intervening vortex sheet segments using the integers
b� and e�, for � = 1, . . . , L, the Lagrangian indices of the plate’s edges e+ (ti) and
e− (ti) being denoted ep and bq . At this point, the wake therefore consists of K isolated
point vortices surrounded by a collection of L disjoint vortex sheet segments, two of
which are being shed continuously from the edges zi

ep
and zi

bq
.

It is next necessary to develop an algorithm that approximates the unknown time
derivatives c̈i , θ̈i , and żi

j and Γ̇ i
j for j = 1, . . . , J in terms of the known quantities ci ,

ċi , θi , θ̇i , and zi
j and Γ i

j for j = 1, . . . , J . If we had such an algorithm, the resulting
time derivatives could then be used as part of a Runge–Kutta scheme to produce
corresponding approximations for the unknowns ci+1, ċi+1, θi+1, θ̇i+1, and zi+1

j and
Γ i+1

j for j = 1, . . . , J ; thus the solution could be marched forward in time. To begin

with, we choose to approximate c̈i and θ̈i using

Fr c̈i = F (ti) + 1
2
(�s + �u + �w) ieiθi , (4.2)

1
3
Fr θ̈i = T (ti) + 1

2
(�s + �u + �w) , (4.3)

where the steady normal force and torque are approximated in the form

�s = −Re
{
ċie

−iθi
} (

Γ i
ep

− Γ i
bq

)
, (4.4)
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�s = −π Re
{
ċie

−iθi
}

Im
{
ċie

−iθi
}
, (4.5)

the unsteady normal force and torque are approximated in the form

�u = Γ̇ i
ep

+ Γ̇ i
bq

− π
2
α̇2, (4.6)

�u = 3
8

(
Γ̇ i

ep
− Γ̇ i

bq

)
− π

8
α̇3, (4.7)

and the wake-induced normal force and torque are approximated in the form

�w =
1

2
(β0 − β2)

(
Γ i

ep
− Γ i

bq

)
+

π

2

N−1∑
n=2

αn (βn−1 − βn+1) , (4.8)

�w =
1

4
(β1 − β3)

(
Γ i

ep
− Γ i

bq

)
+

π

2
(α0 − α2) Re

{
ċie

−iθi
}

+
π

4

N−2∑
n=2

αn (βn−2 − βn+2) . (4.9)

The approximations outlined above follow straightforwardly from the exact
expressions for the normal force and torque on a moving flat plate as derived in Jones
(2003). The relevant expressions are reproduced in the Appendix for convenience. We
continue by approximating the complex conjugate of żi

j in the form

żi
j =

i

2π


 K∑

k=1
σk �=j

wσk(
zi

σk
− zi

j

) +
1

2

L∑
�=1

e�∑
m=b�

wmKδ

(
zi

m − zi
j

)
+ 2π

N∑
n=1

αn εn

(
zi

j

) − Ω
(
zi

j

)
,

(4.10)

for j = 1, . . . , J . The above approximation is a discrete and desingularized version of
the Birkhoff–Rott equation (2.19), in which the wake integrals have been approximated
using a simple quadrature formula and where γ (s, t) has been expanded in the form
of a truncated Chebyshev series of the second kind, the remaining spatial integration
having been performed exactly. As a result, the real weights wj take the form

wj =




Γj+1 − Γj−1 for j = σk k = 1, . . . , K

Γj+1 − Γj for j = b� � = 1, . . . , L

Γj+1 − Γj−1 for j = b� + 1, . . . , e� − 1 � = 1, . . . , L

Γj − Γj−1 for j = e� � = 1, . . . , L,

(4.11)

and the basis functions εn(z) take the form εn(z) = (z −
√

z + 1
√

z − 1)n. Additionally,
Ω(z) = ċie

−iθi + iθ̇i(z − ε1(z)). At this point, the observant reader will note that
equations (4.4)–(4.10) all depend on the, as yet unknown, coefficients αn and βn

for n = 0 . . . , N and we must next develop approximations for these coefficients.
Fortunately, αn and βn can be expressed in the form

αn + iβn =
2

N

[
1

2
ψ0 +

N−1∑
m=1

ψm cos

(
πmn

N

)
+

1

2
(−1)n ψN

]
, (4.12)

for n = 0, . . . , N , which can be efficiently evaluated using the discrete cosine transform
algorithm. In essence, the above relationship ensures that the no-penetration boundary
condition is satisfied at the points ζ (sn, t) for n = 0, . . . , N where sn = cos (πn/N).
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For this to be the case, the interpolated values ψn must also take the form

ψn = − 1

2π

[
K∑

k=1

wσk(
zi

σk
− sn

) +
1

2

L∑
�=1

e�∑
j=b�

wjKδ

(
zi

j − sn

)]
, (4.13)

for n = 0, . . . , N . At this point, it would appear that we are in a position to evaluate
the coefficients αn and βn for n = 0, . . . , N . However, we are not. We have yet to
satisfy the additional constraints

α0 = 2 Im
{
ċie

−iθi
}
, (4.14)

α1 = θ̇i +
1

π

(
Γ i

ep
− Γ i

bq

)
, (4.15)

which are the discrete versions of simultaneous integral constraints (2.16) and (2.17).
Since both α0 and α1 are themselves linear functions of Γ i

ep
and Γ i

bq
, as can be verified

by substituting equations (4.11) and (4.13) into equation (4.12), the constraints (4.14)
and (4.15) represent two simultaneous linear equations for Γ i

ep
and Γ i

bq
and, as such,

can be solved exactly; simple Gaussian elimination is used in practice. Having found
Γ i

ep
and Γ i

bq
, and having re-computed the dependent variables wep−1, wep

, wbq
, wbq+1,

ψn, αn, and βn for n = 0, . . . , N , it is then possible to evaluate the velocities żi
j for

j = 1, . . . , J using equation (4.10). Note that it is also possible to evaluate �s , �s ,
�w , and �w at this stage.

In the current interactive context it is also necessary to evaluate the unsteady loads
�u and �u and these loads depend on the time derivatives Γ̇ i

ep
, Γ̇ i

bq
, and α̇n for

n = 0, . . . , N . We therefore differentiate equation (4.12) with respect to time and
write

α̇n + iβ̇n =
2

N

[
1

2
ψ̇0 +

N−1∑
m=1

ψ̇m cos

(
πmn

N

)
+

1

2
(−1)n ψ̇N

]
, (4.16)

for n = 0, . . . , N , where

ψ̇n =
1

2π

[
K∑

k=1

wσk
żi

σk(
zi

σk
− sn

)2
− 1

2

L∑
�=1

e�∑
j=b�

wjLδ

(
zi

j − sn, ż
i
j

)]
+ Γ̇ i

ep

∂ψn

∂Γ i
ep

+ Γ̇ i
bq

∂ψn

∂Γ i
bq

,

(4.17)

for n = 0, . . . , N . In equation (4.17) the kernel Lδ (z, ż) is the full time derivative of
the vortex-blob kernel Kδ (z) and, as such, takes the form

Lδ (z, ż) =
ż − 2Kδ(z)Re {zż}

|z|2 + δ2
. (4.18)

Again, we seem to be in a position to evaluate the coefficients α̇n and β̇n for
n = 0, . . . , N , but we are not; Γ̇ i

ep
and Γ̇ i

bq
must first satisfy the time-differentiated

constraints

α̇0 = 2 Im{(c̈i − iċi θ̇i)e
−iθi }, (4.19)

α̇1 = θ̈i +
1

π

(
Γ̇ i

ep
− Γ̇ i

bq

)
, (4.20)

Since the time derivatives c̈i and θ̈i are linearly dependent on Γ̇ i
ep

and Γ̇ i
bq

, through

equations (4.2), (4.3), (4.6), and (4.7), and the coefficients α̇0 and α̇1 are linearly
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dependent on Γ̇ i
ep

and Γ̇ i
bq

, through equations (4.16) and (4.17), the equations (4.19)

and (4.20) are two simultaneous linear equations in Γ̇ i
ep

and Γ̇ i
bq

and, as such, can

be solved exactly. Again, Gaussian elimination is used in practice and the dependent
variables �u, �u, c̈i , θ̈i , ψ̇n, α̇n, and β̇n for n = 0, . . . , N are re-computed as part of
the algorithm.

Finally, since the circulation is a Lagrangian variable, we note that Γ̇ i
j = 0 for all

remaining values of j and so the desired time derivatives c̈i , θ̈i , and żi
j and Γ̇ i

j are
then available for j = 1, . . . , J .

4.2. Initial conditions

In order to initialize our solution, the values of c1, θ1, ċ1, θ̇1, Γ
1
j , and z1

j for j = 1, . . . , J

are required. These values are provided using a simplified version of the small-time
solution outlined in § 3. First, we set J = 4, K = 2, σ1 = 1, σK = 4, L = 2, p = 1,
q = 2, bp = ep = 2, and bq = eq = 3. Next, we compute the constants δ±, m, α0e

iϑ0 ,

β0, K± = −2π (m + 1) (3/8)1/3 sgnδ±, and Ω± = ∓i (3/8)2/3 sgnδ± (according to their
definitions in § 3) for arbitrary n, θ0, c0, F0, T0, and Fr . Having done this, we choose
an initial time t1 > 0 and define the initial position and velocity of the plate to be

c1 = c0 + α0e
iϑ0 tm+1

1 , (4.21)

θ1 = θ0 + β0t
m+1
1 , (4.22)

ċ1 = (m + 1) α0e
iϑ0 tm

1 , (4.23)

θ̇1 = (m + 1) β0t
m
1 . (4.24)

We define the initial circulation distribution to be

Γ 1
1 = 0, (4.25)

Γ 1
ep

= K+ |δ+|4/3
t
(4m+1)/3
1 , (4.26)

Γ 1
bq

= K− |δ−|4/3
t
(4m+1)/3
1 , (4.27)

Γ 1
J = 0, (4.28)

and the initial wake configuration to be

z1
1 = 1 + Ω+ |δ+|2/3

t
2(m+1)/3
1 , (4.29)

z1
ep

= 1, (4.30)

z1
bq

= −1, (4.31)

z1
J = −1 − Ω− |δ−|2/3

t
2(m+1)/3
1 . (4.32)

This initial solution is then marched forward in time using the algorithm previously
described. During the calculation, additional Lagrangian points are introduced into
the calculation at each of the plate’s two sharp edges (one at each edge at the
beginning of each time step) to model the continual shedding of vorticity from those
edges. Others are inserted adaptively to accurately represent the evolving shape of
the free vortex sheets; Lagrangian points are also deleted in places where they are no
longer required. The details of these surgical procedures are not included here, but
the reader is referred to preparatory study of Jones (2003) for a detailed account of
the algorithms used.
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4.3. Limitations of the numerical method

Having described the numerical method used, we next highlight its practical
limitations. Most notably, the method only makes physical sense if

µ+(t) − τ (t) > 0 and µ−(t) − τ (t) < 0. (4.33)

These conditions together ensure that any newly shed Lagrangian particles move
away from (instead of onto) each of the plate’s two sharp edges. Unfortunately, these
conditions seem not always to hold in situations of current and practical interest and
no algorithm has yet been proposed to deal with such circumstances adequately. As
a result, the method used here is only able to compute the solution while the logical
statement in equation (4.33) holds true. In practical terms this restricts our investig-
ation to high effective angles of incidence, a situation which, due to the interactive
nature of the problem, tends to prevail at the higher modified Froude numbers.

Another drawback of the method is that it requires O(J 2) floating point operations
per time step, where J is the total number of Lagrangian points in the calculation.
In practice, this means that the method becomes prohibitively expensive when the
complexity of the solution demands the use of tens of thousands of Lagrangian
points. However, the fast summation methods of Greengard & Rokhlin (1987) and
Draghicescu & Draghicescu (1995) can be used to compute the sums appearing in
equation (4.10) in O(J ) flops per time step. Another option is to use the simpler
tree-code algorithms of Lindsay & Krasny (2001), which reduce the operation count
to O(J log J ).

5. Results and discussion
We now present a number of numerical solutions to the full system of governing

equations (2.1)–(2.20), each of which is an approximate solution of the falling card
problem. The external forcing is provided by the constant downward pull of gravity
and so F (t) = −i and T (t) = 0. In general, the plate is released from rest with
an initial angle of inclination θ0. Its subsequent motion, together with the resulting
motion in the surrounding fluid, is then computed, as long as the logical statement in
equation (4.33) is true.

A number of solutions are presented in figures 6–18 at the modified Froude numbers
Fr = 1, 2, and 4 and for the initial inclinations θ0 = 0, π/1024, π/512, π/256, π/128,
π/64, and π/32. These parameter ranges essentially characterize the scope of the
current numerical method; computations at Fr < 1 or for θ0 > π/32 are severely
restricted by equation (4.33). Unless otherwise stated, the solution was computed at
the discrete times t0 = 0, t1 = 1/16, t2 = 5/64, t3 = 6/64, t4 = 7/64, etc., using
the algorithm described in § 4 with δ = 0.2 and N = 128. Direct summation was
used to compute the sums in equations (4.10), (4.13), and (4.17) and a fourth-order
Runge–Kutta method was used to do the time stepping.

Figure 6 shows the trajectory of the falling plate for each of the twenty-one
parameter combinations considered. Each plot is a collage of frames showing the
plate’s position at the times t = 0, 0.5, 1, 1.5, 2, etc. A subset of these computations
are represented in more detail in figures 7–16. This subset of computations is labelled
(a)–(j) and the corresponding plate trajectories are identified in figure 6. Figures 7, 8,
and 9 describe the dynamics of the falling plate by plotting the real and imaginary
parts of the functions c(t), ċ(t), and c̈(t), and the functions θ(t), θ̇ (t), and θ̈(t) against
time. Figures 10, 11, and 12 show the evolution of the trailing vortex wake for
examples (a)–(i) for Fr = 1, 2, and 4 and θ0 = 0, π/1024, and π/256. In each plot the
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Figure 6. The trajectories of a falling flat plate after its release from rest. The trajectories are
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Froude numbers Fr = 1, 2, and 4. The labelled trajectories are discussed further in the text.
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Figure 7. The motion of a falling plate after release from rest; examples (a)–(j). The functions
Re {c(t)}, Re {ċ(t)}, and Re {c̈(t)} are plotted for modified Froude numbers (a)–(c) Fr = 1,
(d)–(f) Fr = 2, and (g)–(j) Fr = 4 and initial angles (a)(d)(g) θ0 = 0, (b)(e)(h) θ0 = π/1024,
(c)(f)(i) θ0 = π/256, and (j) θ0 = π/32.

wake is visualized by showing the position of the plate and the two free vortex sheets
at a number of different times. Figure 13 shows the corresponding edge circulations
Γ±(t), the total shed circulation

[
Γ±(t)

]+

−, and the shedding rates Γ̇ ±(t). Figure 14
shows the aerodynamic normal force �(t) and torque �(t). Figures 15 and 16 feature
example (j) only (Fr = 4 and θ0 = π/32). Figure 15 shows the late-time evolution
of the vortex wake and figure 16 shows the corresponding aerodynamic normal
force �(t) and aerodynamic torque �(t). Finally, in figures 17 and 18, example (j) is
compared to the corresponding solutions obtained from two more primitive models:
(k) a quasi-steady model, and (l) a point-vortex model. The effects of increasing and
decreasing the regularization parameter to (m) δ = 0.3 and (n) δ = 0.1 are also
considered.

5.1. Symmetric calculations

We begin by describing the symmetric examples (a), (d), and (g), in which θ0 = 0.
In these cases the plate remains perfectly horizontal throughout the computation
(θ0 = θ̇0 = θ̈0 = 0) and falls vertically downward (Re {c} = Re {ċ} = Re {c̈} = 0)
with increasing speed. See figures 6, 7, 8, and 9. For times t < 1, the downward
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Figure 8. The motion of a falling plate after release from rest; examples (a)–(j). The functions
Im {c(t)}, Im {ċ(t)}, and Im {c̈(t)} are plotted for modified Froude numbers (a)–(c) Fr = 1,
(d)–(f) Fr = 2, and (g)–(j) Fr = 4 and initial angles (a)(d)(g) θ0 = 0, (b)(e)(h) θ0 = π/1024,
(c)(f)(i) θ0 = π/256, and (j) θ0 = π/32.

acceleration of the plate remains approximately constant and the wake consists of the
two small starting vortices that are shed at t = 0. See figures 10(a), 11(d), 12(g). An
adjustment period then follows during which the downward acceleration of the plate
rapidly decreases whilst the two starting vortices grow and begin to interact with
each other. In example (a) this adjustment period lasts until around t = 4 whereas in
example (g) is lasts until around t = 8. From this point onward, the gravitational and
aerodynamic forces on the plate remain in rough balance and the starting vortices
continue to grow and lengthen while the shedding rate slowly decreases. See figure 13.
Having said this, the gravitational force on the plate is not quite matched by the
aerodynamic drag on the plate and so its downward velocity continues to grow albeit
at a slowing rate. As a result, it is difficult to identify a well-defined terminal velocity
for the plate. However, by the end of each computation the downward velocity has
reached around one and a quarter times the value estimated in § 1 and the plate has
fallen through between 12 and 15 times its own chord length.

At this point it is informative to note that a given instant in non-dimensional
time t does not correspond with the same instant in dimensional time at differing
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Figure 9. The motion of a falling plate after release from rest; examples (a)–(j). The functions
θ (t), θ̇(t), and θ̈ (t) are plotted for modified Froude numbers (a)–(c) Fr = 1, (d)–(f) Fr = 2, and
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modified Froude numbers. This is because time was originally non-dimensionalized
with respect to the time scale

L

U
=

√
Lρs

g(ρs − ρf )Fr
, (5.1)

which itself depends on the modified Froude number, among other things. With this
in mind, we note that example (a) represents twice as long a period of dimensional
time as example (g), all other things being equal. As a result, figure 8 does not
contradict our everyday experience that heavier objects fall faster through fluids than
lighter objects. Instead, it confirms that an initially horizontal plate with Fr = 4 will
fall almost as far as one with Fr = 1 in half the time.

5.2. Asymmetric calculations

We next introduce a small degree of asymmetry by setting θ0 = π/1024 and considering
examples (b), (e), and (h). Again, the plate begins by falling almost vertically downward
and two small starting vortices are shed as before. See figures 10(b), 11(e), and 12(h).
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Figure 10. Examples (a), (b), and (c). The trailing vortex sheets left behind a falling flat plate
with Fr = 1. The wake is visualized at times t = 0, 2, 4, 8, 12, 16, 20, 24, 28, and 32 for
(a) θ0 = 0. At times t = 0, 2, 4, 8, 10, 13, 16, 18, 19, and 19.75 for (b) θ0 = π/1024. And at
times t = 0, 2, 4, 6, 8, 10, 12, 14, 15, and 15.6875 for (c) θ0 = π/256.

However, this slightly asymmetric configuration soon becomes unstable to growing
oscillations. See figures 6–9. The oscillations are amplified by the following mechanism.

Due to the slight asymmetry in the initial conditions, a small component of
the aerodynamic normal force �(t) is immediately available to accelerate the plate
sideways. See figure 14. This, together with the fact that the plate much prefers to
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Figure 11. Examples (d), (e), and (f). The trailing vortex sheets left behind a falling flat plate
with Fr = 2. The wake is visualized at times t = 0, 2, 4, 8, 12, 16, 20, 24, 28, and 32 for
(d) θ0 = 0. At times t = 0, 2, 4, 8, 12, 16, 20, 24, 25, and 25.9375 for (e) θ0 = π/1024. And at
times t = 0, 2, 4, 8, 12, 16, 18, 19, 20, and 21.1875 for (f) θ0 = π/256.

slip sideways through the fluid as opposed to broadside on, causes one of the two
starting vortices to be left slightly behind. In turn, a correcting aerodynamic torque
is set up, due to the resulting asymmetry in the wake, and the plate is brought
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Figure 12. Examples (g), (h), and (i). The trailing vortex sheets left behind a falling flat plate
with Fr = 4. The wake is visualized at times t = 0, 2, 4, 8, 12, 16, 20, 24, 28, and 32 for (g)
θ0 = 0. At times t = 0, 2, 4, 8, 12, 16, 20, 24, 28, and 31 for (h) θ0 = π/1024. And at times
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Figure 13. The circulation around a falling plate after release from rest; examples (a)–(i).
The functions Γ+(t) and Γ−(t), the bound circulation [Γ±(t)]+−, and the shedding rates Γ̇ +(t),
and Γ̇ −(t) are plotted for modified Froude numbers (a)–(c) Fr = 1, (d)–(f) Fr = 2, and (g)–(i)
Fr = 4 and initial angles (a)(d)(g) θ0 = 0, (b)(e)(h) θ0 = π/1024, and (c)(f)(i) θ0 = π/256.
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θ0 = π/1024, and (c)(f)(i) θ0 = π/256.

back toward a horizontal position. The plate’s inertia then causes it to overshoot the
horizontal and the component of the aerodynamic drag that was originally available
to accelerate the plate sideways is then available to decelerate it. This increases the
impact of the asymmetry in the wake and enhances the angular overshoot, making
more pronounced deceleration possible. The process is then repeated in the opposite
direction at larger amplitude and so on. On top of the primary (angular and side-
to-side) oscillations described above sit secondary oscillations, of twice the frequency,
in the downward velocity of the plate. See figure 8. These are driven by oscillations
in the aerodynamic normal force on the plate �(t), which are in turn driven by the
primary angular oscillations, the aerodynamic drag on the plate being instantaneously
maximal when θ(t) = 0, that is twice per primary period. See figures 9 and 14.

In general, the amplitude of all of the above oscillations grows exponentially until
one of two things happens: either the effective angle of attack becomes too small or
a large-scale reconfiguration of the wake is triggered. Unfortunately, each of these
events is usually accompanied by the imminent violation of equation (4.33), in which
case the computation is stopped.

In examples (c), (f), and (i) the degree of asymmetry is increased further by setting
θ0 = π/256. Again, the initial motion of the plate becomes immediately unstable
to growing oscillations and the solutions are qualitatively similar to those already
presented, the only notable difference being the larger amplitude of oscillation.

If we consider all of the solutions presented thus far we can identify two clear trends.
First, the frequency of the growing oscillations remains independent of amplitude at
fixed Fr , at least for the relatively small amplitudes considered here. And second, the
frequency of oscillation scales in direct proportion with the inverse square root of the
modified Froude number 1/

√
Fr . This scaling is to be expected from equations (2.3)
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Figure 15. Example (j). The trailing vortex sheets left behind a falling flat plate with Fr = 4
and θ0 = π/32. The wake is visualized at times t = 15, 16, 17, 18, 19, 20, and 21.375; the
frames for t = 20 and 21.375 are shown magnified by a factor of 2.

and (2.4) and, in view of equation (5.1), suggests that the dimensional frequency of
the oscillations is independent of the modified Froude number, at least for the larger
modified Froude numbers considered here. Of course, this is only true if all other
quantities in equation (5.1) are held fixed. These trends are in agreement with those
previously identified experimentally by Mahadevan et al. (1999).

Finally, we move on to consider example (j), in which a large-scale reconfiguration
of the wake is triggered without violating equation (4.33). At early times, the solution
evolves in a familiar way, exhibiting growing oscillations, until a new kind of event
occurs between t = 16 and t = 18. As the plate swings from left to right, the
presence of the large leading-edge vortex, shed during the first half of the oscillation,
induces a marked increase in the rate of shedding at the trailing-edge. The newly
shed circulation then quickly rolls up into a new trailing-edge vortex and the existing
trailing-edge vortex is effectively shed between t = 18 and t = 19. See figures 6(j)
and 15. The low-pressure core in the newly shed vortex then exerts a large negative
aerodynamic torque on the plate, see figure 16, and the plate begins to rotate in a
clockwise direction, eventually overshooting the horizontal at around t = 20. This
orientation change completely disrupts the familiar side-to-side oscillation of the plate
and presumably initiates another glide from left to right. Unfortunately, the calculation
is stopped at t = 21.375 due to a violation of equation (4.33) at the leading edge.
Despite its limited duration, the calculation in example (j) is encouraging since it



420 M. A. Jones and M. J. Shelley

–1

0

1

2

3

4

0 4 8 12 16 20
–0.75

–0.50

–0.25

0

0.25

0 4 8 12 16 20

�

t

�

�v

�a 

�s + �w

�

t

��v

�a 

�s + �w

Figure 16. Example (j). The total aerodynamic normal force �(t) and torque �(t) on a falling
flat plate after release from rest with Fr = 4 and θ0 = π/32. Also plotted, are the corresponding
acceleration reactions �a(t) and �a(t), unsteady vortical contributions �v(t) and �v(t), and
quasi-steady contributions �s(t) + �w(t) and �s(t) + �w(t).

–16

–14

–12

–10

–8

–6

–4

–2

0

–2 0 2 4

δ = 0.2

y

x
–2 0 2 4

x
–2 0 2 4

x
–2 0 2 4

x
–2 0 2

x

( j) (k) (l) (m) (n)

δ = 0.3 δ = 0.1

Figure 17. Examples (j)–(n). The trajectories of a falling flat plate after its release from rest
with Fr = 4 and θ0 = π/32. The wake is modelled as (j) two regularized vortex sheets with
δ = 0.2, (k) no wake, (l) a pair of point vortices, (m) two regularized vortex sheets with
δ = 0.3, and (n) two regularized vortex sheets with δ = 0.1. The plate positions at t = 16 are
highlighted.

shows that the spontaneous occurrence of a fluid dynamical event (in this case the
shedding of a new trailing-edge vortex) can strongly influence the subsequent motion
of the plate, thereby illustrating the essentially interactive nature of the problem under
consideration.

5.3. The role of added mass

We next examine the relative importance of the effects of added mass in the falling
card problem since for some time now it has been unclear how important such effects
are in comparison with those associated with vortex shedding. Indeed, added mass
effects have been included in previous studies of the falling card problem (in the
absence of vortex shedding) most notably by Mahadevan (1996).
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vortex sheets with δ = 0.2, (l) a pair of point vortices, (m) two regularized vortex sheets with
δ = 0.3, and (n) two regularized vortex sheets with δ = 0.1.

We begin by noting that the direct use of equation (A 9) in equations (A 5) and
(A 6), followed by the use of the integral constraints (2.16) and (2.17), leads to exact
expressions for the unsteady normal force and torque �u(t) and �u(t) in the form

�u(t) ≡ �a(t) + �v(t) = −πν̇(t) +

[∫ Γ±(t)

0

Re {∂tz±(Λ, t)δ1(z±(Λ, t))} dΛ

]+

−
, (5.2)

�u(t) ≡ �a(t) + �v(t) = −π

8
θ̈ (t) +

[∫ Γ±(t)

0

Re {∂tz±(Λ, t)δ2(z±(λ, t))} dΛ

]+

−
, (5.3)

where δ1(z) and δ2(z) are as defined in equation (A 10). The first terms on the right-
hand sides of equations (5.2) and (5.3) are the so-called acceleration reactions and
are henceforth denoted �a(t) and �a(t). They are proportional to the normal and
angular accelerations of the plate and are therefore responsible for the effect known
as added mass. The remaining terms, denoted �v(t) and �v(t), are novel and arise
as a direct result of the relative motion between the plate and its vortex wake. Our
main aim here is to find out which, if any, of the terms in equations (5.2) and (5.3)
are dominant within the context of the falling card problem.

Again we consider example (j). For small times t < 1, we find that the total
aerodynamic force �(t) is dominated by the acceleration reaction �a(t), in line with
the predictions of § 3. However, as the plate’s downward velocity increases �a(t) slowly
decreases whilst the unsteady vortical force �v(t) quickly increases and soon becomes
strongly dominant. See figure 16. This dominance is maintained throughout the
calculation even after the subsequent reconfiguration in the wake, which is triggered
at around t = 16. In contrast, the summed total of the forces �s(t) and �w(t) remains
effectively negligible until t = 16, after which it grows steadily. However, this growth
is largely negated by a simultaneous drop in the acceleration reaction force �a(t). The
total aerodynamic torque �(t) is similarly dominated by the unsteady vortical torque
�v(t), although the torques �s(t) and �w(t) also play a significant role.

It is therefore clear, at least within the context of the example considered, that the
unsteady vortical loads �v(t) and �v(t) dominate the evolution of the plate’s trajectory,
whereas, the other loads, including the acceleration reactions, play important roles
only intermittently.
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5.4. A comparison with two more primitive models

Having noted that the unsteady vortical loads �v(t) and �v(t) are dominant in example
(j), it proves interesting to compare that solution with those obtained through the use
of more primitive models. A number of such models can be derived directly from the
governing equations (2.1)–(2.20). To illustrate the point we first rewrite the equations
of motion for the falling plate in the rest frame of the plate. In this frame, equations
(2.3) and (2.4) can be written as the first-order system

ċ(t) = (τ (t) + iν(t)) eiθ(t), (5.4)

θ̇(t) = ω(t), (5.5)

Fr τ̇ (t) = Fr ν(t)ω(t) − sin θ(t), (5.6)(
1
2
π + Fr

)
ν̇(t) = 1

2
(�v + �w) − 1

2
τ (t)[Γ±(t)]+− − Fr τ (t)ω(t) − cos θ(t), (5.7)(

1
16

π + 1
3
Fr

)
ω̇(t) = 1

2
(�v + �w) − π

2
τ (t)ν(t), (5.8)

where ω(t) denotes the angular velocity of the plate. As an aside, we note
that equations (5.4)–(5.8) are effectively the same as those previously derived by
Mahadevan (1996). However, in contrast with that study both the unsteady and
steady effects of plate’s vortical wake are now included. To aid comparison with the
study of Mahadevan (1996), we also mention that no added mass effect appears in
equation (5.6) because, as far as the surrounding fluid is concerned, the flat plate
considered here has no thickness.

Starting from equations (5.4)–(5.8), together with equations (2.1), (2.9)–(2.19), (5.2)–
(5.3), and (A 7)–(A 10), it is straightforward to derive a number of more primitive
models, either by entirely neglecting or approximately representing the complicated
wake-induced terms. For example, a quasi-steady model that neglects the plate’s
vortical wake altogether can be derived by simply dropping the terms �v(t), �w(t),
�v(t), and �w(t) from the right-hand side of equations (5.7) and (5.8) and by choosing
the negative of the bound circulation [Γ±(t)]+− to be

[Γ±(t)]+− =

{
πω(t) + 2πν(t), τ (t) < 0
πω(t) − 2πν(t), τ (t) > 0.

(5.9)

This particular choice instantaneously imposes the steady Kutta condition at the
trailing edge. Another simple model, which approximately represents the plate’s
vortical wake using two point vortices (one associated with each edge), can be derived
by performing the formal replacement

z±(Γ, t) −→ z±(t), (5.10)

in equations (2.9)–(2.19), (5.2)–(5.3), and (A 9). Then z+(t) and z−(t) denote the
positions of the two point vortices, and any circulation that is shed from either of the
plate’s two sharp edges is effectively transported into the core of the corresponding
point vortex instantaneously.

We next compare the solutions obtained by using the two primitive models described
above with example (j). For completeness, we also consider the effects of altering the
regularization parameter δ. Figure 17 shows the trajectory of the falling plate for
Fr = 4 and θ0 = π/32 as obtained using the different models. Each plot is a collage
of frames showing the plate’s position at the times t = 0, 0.5, 1, 1.5, 2, etc. The
trajectories are labelled (j)–(n) and correspond to (j) the regularized vortex-sheet
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model with δ = 0.2 (repeated from figure 6(j)), (k) the quasi-steady model with
no wake, (l) the point-vortex model, (m) the regularized vortex-sheet model with
δ = 0.3, and (n) the regularized vortex-sheet model with δ = 0.1. Figure 18 shows the
corresponding plate positions and wake configurations at t = 16.

In example (k), the plate quickly accelerates under gravity and, due to the lack of
any effective aerodynamic drag, continues to accelerate ballistically, although slight
angular and side-to-side oscillations are also present. The calculation clearly shows
that the omission of the vortical forces in equations (5.7) and (5.8) is ill-advised.
In contrast, the point-vortex model of example (l) does rather better. For t < 10
it captures the downward, angular, and side-to-side motions well. See figure 17(l).
However, at later times the predicted position of the rightmost vortex becomes
inaccurate (see figure 18(l)) and, more importantly, the inability of the model to
predict the spontaneous shedding event that occurs at t = 16 allows the initiation of
an erroneous tumbling event. Examples (m) and (n) are included only to illustrate the
point that altering the regularization parameter δ has little effect on the macroscopic
properties of the plate’s trajectory, although, the details of the distribution of vorticity
in the wake are notably altered for δ = 0.1 due to the effective re-introduction of the
Kelvin–Helmholtz instability at smaller scales. See figure 18(m). For a more detailed
account of the effects of altering the regularization parameter δ, the interested reader
is referred to the work of Krasny (1986a).

It is therefore clear that the simple primitive models considered here are largely
unsatisfactory, at least in the context of the falling card problem. However, a refined
version of the point-vortex model, modified to allow for the occurrence of spontaneous
shedding events, may yet prove useful.

6. Conclusions
In summary, we have successfully modelled the separated flow of an inviscid fluid

around a falling flat plate using a boundary integral formulation for the complex-
conjugate velocity field Φ(z, t). The resulting steady and unsteady aerodynamic
forces were analytically incorporated into the equations of motion for the plate. The
equations of motion for the surrounding fluid and vortical wake were also derived
and the flow solution was constructed so as to automatically satisfy the kinematic
boundary condition, the unsteady Kutta condition, Kelvin’s circulation theorem, and
the proper far-field boundary conditions. The resulting system of governing equations
was shown to be essentially implicit in the unknown accelerations c̈(t) and θ̈ (t),
which reflects the interactive nature of the problem in hand. However, the linearity
of the relevant equations in those unknowns eventually allowed the coupled system
of governing equations to be rewritten in an essentially explicit form. Finally, the
unsteady aerodynamic loads were shown to depend not only on the usual acceleration
reactions, which lead to the effect known as added mass, but also on novel unsteady
vortical loads, which arise due to relative motion between the plate and its wake.

For small times t < 1, an asymptotic solution to the full system of governing
equations was derived and the plate’s motion was shown to depend only on gravity
and the acceleration reaction of the fluid; terms due to the unsteady shedding of
vorticity from the plate’s two sharp edges were shown to be of higher order.

For larger times, a novel numerical treatment of the full system of evolution
equations was proposed and implemented and the results of several example
calculations were presented. Unfortunately, the scope of the proposed numerical
method turned out to be somewhat limited, due to the spontaneous occurrence of a



424 M. A. Jones and M. J. Shelley

specific type of backflow event. However, long-time solutions for Fr > 1 and θ0 < π/32
were successfully obtained. In the parameter ranges considered, all asymmetric
solutions were found to be unstable to growing oscillations, the non-dimensional
frequency of which scaled with 1/

√
Fr .

This work is dedicated to Dr Sergei Timoshin for originally inspiring the first
of the two authors to work on the falling paper problem. We would also like to
thank Professors Steve Childress and Robert Krasny for their many enlightening
conversations and comments. This work was partly funded by KDI grant NSF
9980069 and DOE grant DE-FG02-88ER25053.

Appendix. Alternative expressions for �(t) and �(t)

As reported in Jones (2003), one can derive alternative expressions for the normal
force �(t) and the torque �(t) that effectively replace equations (2.5) and (2.6); they
also eliminate the need for equations (2.7), (2.8), and (2.21)–(2.24). The alternative
expressions for �(t) and �(t) are restated below for convenience. They are written in
the slightly altered yet equivalent and exact form

�(t) = �s(t) + �u(t) + �w(t), (A 1)

�(t) = �s(t) + �u(t) + �w(t), (A 2)

where the steady components of the normal force and torque are

�s(t) = −τ (t)[Γ±(t)]+− (A 3)

�s(t) = −π τ (t)ν(t), (A 4)

the unsteady components of the normal force and torque are

�u(t) = 〈Γ̇ +(t)〉+
− − π

2
α̇2(t), (A 5)

�u(t) = 3
8
[Γ̇ ±(t)]+− − 1

8
πα̇3(t), (A 6)

and the components of the normal force and torque that are induced by the presence
of the circulation in the wake are

�w(t) =
1

2
(β0 − β2)[Γ±(t)]+− +

π

2

∞∑
n=2

αn(βn−1 − βn+1), (A 7)

�w(t) =
1

4
(β1 − β3)[Γ±(t)]+− +

π

2
(α0 − α2)τ (t) +

π

4

∞∑
n=2

αn(βn−2 − βn+2). (A 8)

In Jones (2003), the real coefficients αn(t) and βn(t) were defined implicitly in terms of
two Chebyshev series expansions. However, it is possible to derive explicit expressions
for αn(t) and βn(t) and one can show that

αn(t) + iβn(t) = − 1

π

[∫ Γ±(t)

0

δn(z±(Λ, t)) dΛ

]+

−
(A 9)

for n = 0, 1, . . . , where

δn(z) =
(z −

√
z + 1

√
z − 1)n√

z + 1
√

z − 1
. (A 10)
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